데이콘 Basic 풍속 예측 AI 경진대회 https://dacon.io/competitions/official/236126/data 57920개의 데이터 ID : 샘플 별 고유 id 월: 데이터가 기록된 달을 나타냅니다. 일: 데이터가 기록된 날짜를 나타냅니다. 측정 시간대: 데이터가 측정된 시간대를 나타냅니다. 오전, 오후, 저녁, 새벽으로 구분되어 있습니다. 섭씨 온도 (° C) 절대 온도 (K) 이슬점 온도 (° C) 상대 습도 (%) 대기압 (mbar) 포화 증기압 (mbar) 실제 증기압 (mbar) 증기압 부족량 (mbar) 수증기 함량 (g/kg): 공기 1 kg당 수증기의 질량을 그램(g) 단위로 나타냅니다. 공기 밀도 (g/m**3): 1 m³의 부피에 들어있는 공기의 질량을 그램(..
회귀 실습 - 캐글 주택 가격: 고급 회귀 기법 본 경연에서는 RMSE로 성능을 평가하되 예측값과 실제값의 로그 변환을 기반으로 수행한다고 했으니 결론적으로는 RMSLE와 동일한 방식이다 가격이 비싼 주택일수록 예측 결과 오류가 전체 오류에 미치는 비중이 높으므로 이를 상쇄하기 위해 로그 변환된 RMSLE를 이용하자 데이터 전처리 In [1]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') house_df_org = pd.read_csv('/content/house_price.csv') house_..
1편: https://jaayy.tistory.com/84 [회귀] 자동차 가격 예측 AI 경진대회 (1) - 데이터 불러오기, 간단 EDA 데이콘 Basic 자동차 가격 예측 AI 경진대회 https://dacon.io/competitions/official/236114/overview/description 자동차 가격을 예측하는 AI 알고리즘 개발 자동차 생산년도, 브랜드, 종류 등 자동차와 관련된 데이 jaayy.tistory.com AutoGluon 활용해보자 https://auto.gluon.ai/stable/index.html https://dacon.io/competitions/official/236114/codeshare/8456?page=1&dtype=recent https://dacon..
데이콘 Basic 자동차 가격 예측 AI 경진대회 https://dacon.io/competitions/official/236114/overview/description 자동차 가격을 예측하는 AI 알고리즘 개발 자동차 생산년도, 브랜드, 종류 등 자동차와 관련된 데이터를 활용하여 자동차 가격을 예측하는 AI 모델을 개발 라이브러리 정의 In [1]: import pandas as pd import random random.seed(30) import os import numpy as np import seaborn as sns import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') In [31]: #한글 폰트 사..
회귀 실습 - 자전거 대여 수요 예측 https://www.kaggle.com/competitions/bike-sharing-demand/data 데이터 설명 datetime - hourly date + timestamp season - 1 = spring, 2 = summer, 3 = fall, 4 = winter holiday - whether the day is considered a holiday workingday - whether the day is neither a weekend nor holiday weather 1: Clear, Few clouds, Partly cloudy 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist ..
회귀 트리 지금까지 알아 본 선형 회귀는 회귀 계수의 관계를 모두 선형으로 가정하는 방식이다 비선형 회귀 역시 비선형 회귀 함수를 통해 결과값을 예측한다 머신러닝 기반의 회귀는 회귀 계수를 기반으로 하는 최적 회귀 함수를 도출하는 것이 주 목표다 이번에는 트리를 기반으로 하는 회귀 방식을 알아보자 트리 기반의 회귀 회귀를 위한 트리를 생성하고 이를 기반으로 회귀 예측을 한다 분류 트리와 크게 다르지 않지만, 리프 노드에서 예측 결정값을 만드는 과정에서 차이가 있다 → 분류 트리가 특정 레이블을 결정하는 것과 달리 회귀 트리는 리프 노드가 속한 데이터값의 평균값을 구해 회귀 예측 값을 계산한다 결정 트리, 랜덤 포레스트, GBM, LightGBM, XGBoost 등과 같은 트리 기반 알고리즘은 분류뿐만 아..